JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルGASP- GENERAL AVIATION SYNTHESIS PROGRAM
著者(英)Galloway, T. L.
発行日1994-01-01
言語eng
内容記述The General Aviation Synthesis Program, GASP, was developed to perform tasks generally associated with the preliminary phase of aircraft design. GASP gives the analyst the capability of performing parametric studies in a rapid manner during preliminary design efforts. During the development of GASP, emphasis was placed on small fixed-wing aircraft employing propulsion systems varying from a single piston engine with a fixed pitch propeller through twin turboprop/turbofan systems as employed in business or transport type aircraft. The program is comprised of modules representing the various technical disciplines of design, integrated into a computational flow which ensures that the interacting effects of design variables are continuously accounted for in the aircraft sizing procedures. GASP provides a useful tool for comparing configurations, assessing aircraft performance and economics, and performing tradeoff and sensitivity studies. By utilizing GASP, the impact of various aircraft requirements and design factors may be studied in a systematic manner, with benefits being measured in terms of overall aircraft performance and economics. The GASP program consists of a control module and six "technology" submodules which perform the various independent studies required in the design of general aviation or small transport type aircraft. The six technology modules include geometry, aerodynamics, propulsion, weight and balance, mission analysis, and economics. The geometry module calculates the dimensions of the synthesized aircraft components based on such input parameters as number of passengers, aspect ratio, taper ratio, sweep angles, and thickness of wing and tail surfaces. The aerodynamics module calculates the various lift and drag coefficients of the synthesized aircraft based on inputs concerning configuration geometry, flight conditions, and type of high lift device. The propulsion module determines the engine size and performance for the synthesized aircraft. Both cruise and take-off requirements for the aircraft may be specified. This module can currently simulate turbojet, turbofan, turboprop, and reciprocating or rotating combustion engines. The weight and balance module accepts as input gross weight, payload, aircraft geometry, and weight trend coefficients for use in calculating the size of tip tanks and wing location required such that the synthesized aircraft is in balance for center of gravity travel. In the mission analysis module, the taxi, take-off, climb, cruise, and landing segments of a specified mission are analyzed to compute the total range, and the aircraft size required to provide this range is determined. In the economic module both the flyaway and operating costs are determined from estimated resources and services cost. The six technology modules are integrated into a single synthesis system by the control module. This integrated approach ensures that the results from each module contain the effect of design interactions among all the modules. Starting from a set of simple input quantities concerning aircraft type, size, and performance, the synthesis is extended to the point where all of the important aircraft characteristics have been analyzed quantitatively. Together, the synthesis model and procedure develops aircraft configurations in a manner useful in parametric analysis and provides a useful step toward more detailed analytical and experimental studies. The GASP program is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 200K(octal) of 60 bit words. The GASP program was developed in 1978.
NASA分類AIRCRAFT DESIGN, TESTING AND PERFORMANCE
レポートNO94M10017
ARC-11434
権利No Copyright
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/312874


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。