タイトル | Space-Time Controls on Carbon Sequestration Over Large-Scale Amazon Basin |
著者(英) | Cooper, Harry J.; Smith, Eric A.; Grose, Andrew; daRocha, Humberto R.; Starr, David O.; Norman, John; Gu, Jiujing |
著者所属(英) | NASA Goddard Space Flight Center |
発行日 | 2002-01-01 |
言語 | eng |
内容記述 | A major research focus of the LBA Ecology Program is an assessment of the carbon budget and the carbon sequestering capacity of the large scale forest-pasture system that dominates the Amazonia landscape, and its time-space heterogeneity manifest in carbon fluxes across the large scale Amazon basin ecosystem. Quantification of these processes requires a combination of in situ measurements, remotely sensed measurements from space, and a realistically forced hydrometeorological model coupled to a carbon assimilation model, capable of simulating details within the surface energy and water budgets along with the principle modes of photosynthesis and respiration. Here we describe the results of an investigation concerning the space-time controls of carbon sources and sinks distributed over the large scale Amazon basin. The results are derived from a carbon-water-energy budget retrieval system for the large scale Amazon basin, which uses a coupled carbon assimilation-hydrometeorological model as an integrating system, forced by both in situ meteorological measurements and remotely sensed radiation fluxes and precipitation retrieval retrieved from a combination of GOES, SSM/I, TOMS, and TRMM satellite measurements. Brief discussion concerning validation of (a) retrieved surface radiation fluxes and precipitation based on 30-min averaged surface measurements taken at Ji-Parana in Rondonia and Manaus in Amazonas, and (b) modeled carbon fluxes based on tower CO2 flux measurements taken at Reserva Jaru, Manaus and Fazenda Nossa Senhora. The space-time controls on carbon sequestration are partitioned into sets of factors classified by: (1) above canopy meteorology, (2) incoming surface radiation, (3) precipitation interception, and (4) indigenous stomatal processes varied over the different land covers of pristine rainforest, partially, and fully logged rainforests, and pasture lands. These are the principle meteorological, thermodynamical, hydrological, and biophysical control paths which perturb net carbon fluxes and sequestration, produce time-space switching of carbon sources and sinks, undergo modulation through atmospheric boundary layer feedbacks, and respond to any discontinuous intervention on the landscape itself such as produced by human intervention in converting rainforest to pasture or conducting selective/clearcut logging operations. |
NASA分類 | Environment Pollution |
権利 | No Copyright |
|