JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルInduction of Three-Dimensional Growth of Human Liver Cells in Simulated Microgravity
著者(英)Risin, D.; Soriano, H. E.; Khaoustov, V. I.; Murry, D. J.; Dawson, David L.; Yoffe, B.; Pellis, Neal R.
著者所属(英)NASA Johnson Space Center
発行日1999-01-01
言語eng
内容記述We previously reported that a NASA-developed bioreactor that simulates microgravity environment and creates the unique environment of low shear force and high-mass transfer is conducive for maintaining long term 3-D cell cultures of functional hepatocytes (60 days). However, significant further expansion of liver mass, or the remodeling of liver in vitro was jeopardized by the appearance of apoptotic zones in the center of large cell aggregates. To optimize oxygenation and nutritional uptake within growing cellular aggregates we cultured primary human liver cells (HLC) in a bioreactor in the presence or absence of microcarriers and biodegradable scaffolds. Also, to promote angiogenesis, HLC were cultured with or without microvascular endothelial cells. HLC were harvested from human livers by collagenase perfusion. While microcarriers did not affect cell growth, HLC cultured with biodegradable scaffolds made from polyglycolic acid (PGA) formed aggregates up to 3 cm in length. Culturing cells with PGA scaffolds increased the efficiency of cell self-assembly and the formation of larger cell aggregates. Based on histological evaluation it appears that the degree of apoptotic cells was diminished as compared to cultures without scaffolds. Histology of HLC with PGA-scaffolds revealed cell distribution between the fibers of the scaffolds, and cell-cell and cell-fiber interactions. Analyses of HLC spheroids revealed tissue-like structures comprised of hepatocytes, biliary epithelial cells and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes and bile canaliculi with multiple microvilli and tight cellular junctions. Hepatocytes were further organized into tight clusters surrounded by complex stromal structures and reticulin fibers. Also, we observed higher levels of albumin mRNA expression when hepatocytes were co-cultured with endothelial cells. To evaluate viability and microsomal deethylation activity of hepatocytes we assessed the metabolism of midazolam by gas chromatography. Samples that were collected from HLC cultured in the bioreactor contained higher levels of midazolam metabolites (1-OH-midazolam and 4-OH-midazolam) than samples collected from conventional cultures. In summary, we have shown that co-culture of HLC with endothelial cells and/or culturing in the presence of PGA scaffolds provides additional advantages in maintaining functional activity of 3-D hepatocyte cultures that resemble liver tissue. This cell culture system may facilitate studies of liver regeneration and cell-to-cell interactions that occur in vivo and suggest the feasibility of using this approach for pre-clinical metabolic screening of novel drug candidates.
NASA分類Space Processing
権利No Copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。