タイトル | Performance of the GEOS-3/Terra Data Assimilation System in the Northern Stratospheric Winter 1999/2000 |
著者(英) | Ledvina, Andrea; Newman, Paul A.; Waugh, Darryn; Lait, Leslie R.; Pawson, S.; Lamich, David; Conaty, Austin |
著者所属(英) | Universities Space Research Association |
発行日 | 2000-01-01 |
言語 | eng |
内容記述 | As part of NASA's support for the Terra satellite, which became operational in January 2000, the Data Assimilation Office introduced a new version of the GEOS data assimilation system (DAS) in November 1999. This system, GEOS-3/Terra, differs from its predecessor in several ways, notably through an increase in horizontal resolution (from 2-by-2.5 degrees to 1-by-1 degree), a slightly lower upper boundary (0.1 instead of 0.01hPa) with fewer levels (48 as opposed to 70), and substantial changes to the tropospheric physics package. This paper will address the performance of the GEOS-3/Terra DAS in the stratosphere. it focusses on the analyses (produced four times daily) and the five-day forecasts (produced twice daily). These were important for the meteorological support of the SAGE-3 Ozone Loss and Validation Experiment, based in Kiruna, Northern Sweden, in the winter of 1999/2000. It is shown that the analyses of basic meteorological fields (temperature, geopotential height, and horizontal wind) are in good agreement with those from other centers. The analyses captured the cold polar vortex which persisted through most of the winter. It is shown that forecasts (up to five days) tend to have a warm bias, which is important for the prediction of polar stratospheric clouds, which are triggered by temperatures of 195K (or lower). The importance of accurate upper tropospheric forecasts in predicting the stratospheric flow is highlighted in the context of the evolution of the shape of the stratospheric polar vortex. A prominent blocking high in the Atlantic region in January was an important factor determining the shape of the distorted lower stratospheric vortex; the predictive skill of these features was strongly coupled in the GEOS-3/Terra system. |
NASA分類 | Geophysics |
権利 | No Copyright |
|