JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトル2次元磁場ゆらぎ中での高エネルギー荷電粒子の非古典拡散
その他のタイトルNon-classical diffusion of energetic particles in two dimensional magnetic field turbulence
著者(日)大塚 史子; 羽田 亨
著者(英)Otsuka, Fumiko; Hada, Toru
著者所属(日)九州大学 大学院総合理工学府; 九州大学 大学院総合理工学府
著者所属(英)Kyushu University Interdisciplinary Graduate School of Engineering Sciences; Kyushu University Interdisciplinary Graduate School of Engineering Sciences
発行日2003-09-30
刊行物名九州大学大学院総合理工学報告
Engineering Sciences Reports, Kyushu University
No. 2
開始ページ249
終了ページ257
刊行年月日2003-09-30
言語jpn
抄録Non-classical diffusion of energetic particles is studied using a simple 2-d cross field diffusion model. Important parameter is ratio of typical particle Larmor radius (rho) to the field correlation length (L). In the model, when rho/L is infinitesimally small, the particles essentially gradient-B drift along equi-contour lines of the magnetic field strength, and thus the diffusion in this parameter regime can essentially be understood by analyzing statistics of magnetic field islands composed of these equi-contour lines. The statistics of field islands such as probability density function of mean radius and fractal dimension of field islands are numerically evaluated, depending on power-law index of the magnetic field turbulence. In the model, both super-diffusion (for finite time scale) and sub-diffusion can take place. The scaling law of the diffusion coefficient is found numerically and analytically using the parameters obtained by field islands statistics.
キーワードenergetic charged particle; cross field diffusion; non-classical diffusion; field correlation length; diffusion coefficient; magnetic field island; probability density function; research and development; numerical analysis; 2 dimensional model; scaling law; Larmor radius; 高エネルギー荷電粒子; 交差場拡散; 非古典的拡散; 磁場相関長; 拡散係数; 磁場アイランド; 確率密度関数; 研究開発; 数値解析; 2次元モデル; スケーリング法則; Larmor半径
資料種別Technical Report
ISSN1346-7883
SHI-NOAA0046204006
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/39375


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。