JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルMagnesium Diboride Current Leads
本文(外部サイト)http://hdl.handle.net/2060/20100028876
著者(英)Panek, John
著者所属(英)NASA Goddard Space Flight Center
発行日2010-08-01
言語eng
内容記述A recently discovered superconductor, magnesium diboride (MgB2), can be used to fabricate conducting leads used in cryogenic applications. Dis covered to be superconducting in 2001, MgB2 has the advantage of remaining superconducting at higher temperatures than the previously used material, NbTi. The purpose of these leads is to provide 2 A of electricity to motors located in a 1.3 K environment. The providing environment is a relatively warm 17 K. Requirements for these leads are to survive temperature fluctuations in the 5 K and 11 K heat sinks, and not conduct excessive heat into the 1.3 K environment. Test data showed that each lead in the assembly could conduct 5 A at 4 K, which, when scaled to 17 K, still provided more than the required 2 A. The lead assembly consists of 12 steelclad MgB2 wires, a tensioned Kevlar support, a thermal heat sink interface at 4 K, and base plates. The wires are soldered to heavy copper leads at the 17 K end, and to thin copper-clad NbTi leads at the 1.3 K end. The leads were designed, fabricated, and tested at the Forschungszentrum Karlsruhe - Institut foer Technische Physik before inclusion in Goddard's XRS (X-Ray Spectrometer) instrument onboard the Astro-E2 spacecraft. A key factor is that MgB2 remains superconducting up to 30 K, which means that it does not introduce joule heating as a resistive wire would. Because the required temperature ranges are 1.3-17 K, this provides a large margin of safety. Previous designs lost superconductivity at around 8 K. The disadvantage to MgB2 is that it is a brittle ceramic, and making thin wires from it is challenging. The solution was to encase the leads in thin steel tubes for strength. Previous designs were so brittle as to risk instrument survival. MgB2 leads can be used in any cryogenic application where small currents need to be conducted at below 30 K. Because previous designs would superconduct only at up to 8 K, this new design would be ideal for the 8-30 K range.
NASA分類Man/System Technology and Life Support
レポートNOGSC-15657-1
権利Copyright, Distribution as joint owner in the copyright
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/499953


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。