JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルSimulated Microgravity Induced Cytoskeletal Rearrangements are Modulated by Protooncogenes
著者(英)Bosah, F.; Harris-Hooker, S.; Melhado, C. D.; Sanford, G. L.
著者所属(英)Morehouse School of Medicine
発行日1998-02-22
言語eng
内容記述Microgravity is the environment living systems encounter during space flight and gravitational unloading is the effect of this environment on living systems. The cell, being a multiphasic chemical system, is a useful starting point to study the potential impact of gravity unloading on physiological function. In the absence of gravity, sedimentation of organelles including chromosomes, mitochondria, nuclei, the Golgi apparatus, vacuoles, and the endoplasmic reticulum may be affected. Most of these organelles, however, are somewhat held in place by cytoskeleton. Hansen and Igber suggest that intermediate filaments act to stabilize the nuleus against rotational movement, and integrate cell and nuclear structure. The tensegrity theory supports the idea that mechanical or physical forces alters the cytoskeletal structures of a cell resulting in the changes in cell: matrix interactions and receptor-signaling coupling. This type of stress to the cytoskeleton may be largely responsible regulating cell shape, growth, movement and metabolism. Mouse MC3T3 El cells under microgravity exhibited significant cytoskeletal changes and alterations in cell growth. The alterations in cytoskeleton architecture may be due to changes in the expression of actin related proteins or integrins. Philopott and coworkers reported on changes in the distribution of microtubule and cytoskeleton elements in the cells of heart tissue from space flight rats and those centrifuged at 1.7g. Other researchers have showed that microgravity reduced EGF-induced c-fos and c-jun expression compared to 1 g controls. Since c-fos and c-jun are known regulators of cell growth, it is likely that altered signal transduction involving protooncogenes may play a crucial role in the reduced growth and alterations in cytoskeletal arrangements found during space flight. It is clear that a microgravity environment induces a number of changes in cell shape, cell surface molecules, gene expression, and cytoskeletal reorganization. However the underlying mechanism for these cellular changes have not been clearly defined. We examined alterations in endothelial migration, and cytoskeleton architecture (microfilamentous f-actin and vimentin-rich- intermediate filaments) following wounding under simulated microgravity. We also examined the possibility that altered signal transduction pathways, involving protooncogenes, may play a crucial role in microgravity-induced retardation of cell migration and alterations in cytoskeletal organization. We hypothesize that, based on the tensegrity theory, cytoskeletal organization respond to gravitational unloading and through this response, cell behavior, function and gene expression are modified.
NASA分類Space Processing
権利No Copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。