JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルInvestigation of Diffusion Flame Tip Thermodiffusive and Hydrodynamic Instability under Microgravity Conditions
著者(英)Wichman, I. S.; Olson, S. L.
著者所属(英)NASA Glenn Research Center
発行日1999-05-01
言語eng
内容記述We employ the opposed flow flame-spread configuration in order to examine flame-front instability of diffusion flames near cold, solid boundaries. The thermo-diffusive and hydrodynamic instabilities can transform an initially planar flame front into an irregularly curved, corrugated, possibly fragmented front. Under ordinary 1-g conditions, the buoyancy-induced flow masks the thermo-diffusive and hydrodynamic instabilities and produces planar flames. Such stable spreading flames have been observed for decades in laboratory experiments. Experiments in zero gravity are necessary to produce unstable flame fronts. The thermo-diffusive/hydrodynamic microgravity instability appears in diffusion flames such as, for example: the candle flame oscillations observed by Dietrich et al.; smolder instabilities on a recent Space Shuttle flight. Drs. T. Kashiwagi and S. Olson have attributed the latter to a lowered oxygen transport rate to the hot, reactive surface. Consider a burning surface near the flame extinction limit. The flow, or stretch, induced by the diffusion flame is weak, hence buoyancy plays a small role, thereby enabling previously secondary mechanisms, such as differential thermo-diffusion, to become the most important mechanisms. The flame leading edge becomes unstable; and diffusion flame breakup, oscillation, and rejoining all occur at a measurable frequency of approximately O(1 Hz). This project has only begun in January of this year, 1999. To date, there have been no flight experiments on flame spread instabilities. However, we have made numerous experiments in the NASA 2.2 and 5 second drop towers on flame spread over very thin cellulosic fuels. We have been very fortunate through a combination of factors, to be explained, to obtain some interesting, perhaps even compelling, results on diffusion flame instability in the presence of heat losses to cold surfaces.
NASA分類Materials Processing
権利No Copyright
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/540083


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。