JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルMiniature Piezoelectric Shaker Mechanism for Autonomous Distribution of Unconsolidated Sample to Instrument Cells
著者(英)Tucker, Curtis; Sherrit, Stewart; Bao, Xiaoqi; Frankovich, Kent
発行日2009-03-09
言語eng
内容記述To perform in-situ measurements on Mars or other planetary bodies many instruments require powder produced using some sampling technique (drilling/coring) or sample processing technique (core crushing) to be placed in measurement cells. This usually requires filling a small sample cell using an inlet funnel. In order to minimize cross contamination with future samples and ensure the sample is transferred from the funnel to the test cell with minimal residual powder the funnel is shaken. The shaking assists gravity by fluidizing the powder and restoring flow of the material. In order to counter cross contamination or potential clogging due to settling during autonomous handling a piezoelectric shaking mechanism was designed for the deposition of sample fines in instrument inlet funnels. This device was designed to be lightweight, consume low power and demonstrated to be a resilient solid state actuator that can be mechanically and electrically tuned to shake the inlet funnel. In the final design configuration tested under nominal Mars Ambient conditions the funnel mechanism is driven by three symmetrically mounted piezoelectric flexure actuators that are out of the funnel support load path. The frequency of the actuation can be electrically controlled and monitored and mechanically tuned by the addition of tuning mass on the free end of the actuator. Unlike conventional electromagnetic motors these devices are solid state and can be designed with no macroscopically moving parts. This paper will discuss the design and testing results of these shaking mechanisms.
NASA分類Solid-State Physics; Lunar and Planetary Science and Exploration
権利Copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。