タイトル | Improvements to the Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) |
本文(外部サイト) | http://hdl.handle.net/2060/20160006317 |
著者(英) | Mercer, David; Doggett, William R.; Jones, Thomas C.; Lodding, Kenneth N.; Ganoe, George G.; Dorsey, John T.; King, Bruce D. |
著者所属(英) | NASA Langley Research Center |
発行日 | 2015-08-31 |
言語 | eng |
内容記述 | Devices for manipulating and precisely placing payloads are critical for efficient space operations including berthing of spacecraft, in-space assembly, construction and repair. Key to the success of many NASA space activities has been the availability of long-reach crane-like devices such as the Shuttle Remote Manipulation System (SRMS) and the Space Station Remote Manipulation System (SSRMS). These devices have been used for many operations including berthing visiting spacecraft to the International Space Station, deployment of spacecraft, space station assembly, astronaut positioning, payload transfer, and spacecraft inspection prior to atmospheric re-entry. Retiring the Space Transportation System has led to the removal of the SRMS from consideration for in-space missions, thus creating a capability gap. Recognizing this gap, work was initiated at NASA on a new architecture for long-reach space manipulators. Most current devices are constructed by joining revolute joints with carbon composite tubes, with the joints accounting for the majority of the device mass. For example in the case of the SRMS, the entire device mass is 410 kg (904 lbm); the joint structure, motors, gear train, cabling, etc., accounts for the majority of the system mass because the carbon composite tubes mass is 46 kg (101 lbm). An alternate space manipulator concept, the Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) was created to address deficiencies in the current state-of-the-art in long-reach manipulators. The antagonistic tendon actuated joint architecture allows the motors actuating the joint to be removed from the joint axis, which simplifies the joint design while simultaneously providing mechanical advantage for the motors. The improved mechanical advantage, in turn, reduces the size and power requirements for the motor and gear train. This paper will describe recent architectural improvements to the TALISMAN design that: 1) improve the operational robustness of the system by enabling maneuvers not originally possible by varying the TALISMAN geometry; 2) enable efficient active antagonistic control of a joint while sharing cable between antagonistic tension networks; and 3) uses a unique arrangement of differential capstans to reduce motor torque requirements by an order of magnitude. The paper will also summarize recent efforts to enable autonomous deployment of a TALISMAN including the deployment concept of operations and associated hardware system design. The deployment forces are provided by the same motor systems that are used for articulation, thus reducing the mass associated with the deployment system. The deployment approach is being tested on a TALISMAN prototype which is designed to provide the same operational performance as a shuttle-class manipulator. The prototype has been fabricated and is operational in a new facility at NASA Langley Research Center that has a large area (15.2 m by 21.3 m [50 ft by 70 ft]) air-bearing floor. |
NASA分類 | Structural Mechanics; Cybernetics, Artificial Intelligence and Robotics |
レポートNO | NF1676L-20771 |
権利 | Copyright, Distribution as joint owner in the copyright |
|