JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルThe Gravity Field of Mars From MGS, Mars Odyssey, and MRO Radio Science
本文(外部サイト)http://hdl.handle.net/2060/20160008404
著者(英)Zuber, Maria T.; Lemoine, Frank G.; Mazarico, Erwan; Goossens, Sander; Smith, David E.; Genova, Antonio
著者所属(英)NASA Goddard Space Flight Center
発行日2015-03-16
言語eng
内容記述The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have enabled NASA to conduct reconnaissance and exploration of Mars from orbit for sixteen consecutive years. These radio systems on these spacecraft enabled radio science in orbit around Mars to improve the knowledge of the static structure of the Martian gravitational field. The continuity of the radio tracking data, which cover more than a solar cycle, also provides useful information to characterize the temporal variability of the gravity field, relevant to the planet's internal dynamics and the structure and dynamics of the atmosphere [1]. MGS operated for more than 7 years, between 1999 and 2006, in a frozen sun-synchronous, near-circular, polar orbit with the periapsis at approximately 370 km altitude. ODY and MRO have been orbiting Mars in two separate sun-synchronous orbits at different local times and altitudes. ODY began its mapping phase in 2002 with the periapis at approximately 390 km altitude and 4-5pm Local Solar Time (LST), whereas the MRO science mission started in November 2006 with the periapis at approximately 255 km altitude and 3pm LST. The 16 years of radio tracking data provide useful information on the atmospheric density in the Martian upper atmosphere. We used ODY and MRO radio data to recover the long-term periodicity of the major atmospheric constituents -- CO2, O, and He -- at the orbit altitudes of these two spacecraft [2]. The improved atmospheric model provides a better prediction of the annual and semi-annual variability of the dominant species. Therefore, the inclusion of the recovered model leads to improved orbit determination and an improved gravity field model of Mars with MGS, ODY, and MRO radio tracking data.
NASA分類Lunar and Planetary Science and Exploration
レポートNOGSFC-E-DAA-TN21237
権利Copyright, Distribution as joint owner in the copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。