JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルPluto and Charon Seen with the New Horizons Spacecraft
本文(外部サイト)http://hdl.handle.net/2060/20160009762
著者(英)Weaver, H. A.; Olkin, C. B.; Ennico, K.; Young, L. A.; Stern, S. A.; Cruikshank, D. P.
著者所属(英)NASA Ames Research Center
発行日2016-07-30
言語eng
内容記述After nearly a decade en route, New Horizons flew through the Pluto system in July 2015. The encounter hemisphere of Pluto shows ongoing surface geological activity centered on a vast basin (Sputnik Planum [SP]*) containing a thick layer of volatile ices with a crater retention age no greater than approximately 10 Ma. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, likely by sublimation erosion and/or collapse. Also seen are constructional mounds with central depressions, and ridges with complex bladed textures. Pluto has ancient cratered terrains up to approximately 4 Ga old that are fractured and mantled, and perhaps eroded by glacial processes. Charon does not appear to be currently active, but experienced major tectonism and resurfacing nearly 4 Ga ago. Imaging spectrometer observations of Pluto reveal the encounter hemisphere to be dominated by volatile ices of N2, CO, and CH4, along with non-volatile components that include H2O and tholins. The most volatile of Pluto's ices (N2 and CO) are especially prevalent in the western half of Tombaugh Regio (TR), and the strikingly flat Sputnik Planum basin, which lies a few km below surrounding elevations. The high mobility of N2 and CO ices enables SP's surface to refresh itself sufficiently rapidly that no impact craters are seen there. This likely occurs through a combination of solid state convective overturning and sublimation/ condensation that produces regular patterns of pits and ridges on scales of 102 to 103 m. In many areas, CH4 appears to favor topographically high regions. Its propensity to condense on ridges could play a role in forming the bladed terrain seen in Tartarus Dorsa. H2O can be discerned across much of Cthulhu Regio, and also in a few isolated spots. In many regions, H2O ice is associated with reddish tholin coloration. Pluto's atmosphere was probed with the radio science experiment (REX) and the Alice UV spectrometer, as well as imaging at high phase angles. The surface pressure, due mostly to N2, is approximately 11 microbars. Extensive multiple haze layers are seen in the images. Alice has detected hydrocarbons in addition to CH4 in the atmosphere. Since both are inert, H2O ice and tholin could have similar geological behaviors on Pluto, possibly including aeolian transport or mobilization by volatile ice glaciation. While Pluto's H2O ice is sculpted and at least partially veiled by more volatile ices, Charon's heavily cratered H2O ice is exposed globally. H2O ice spectral bands characteristic of crystalline ice are seen everywhere on the encounter hemisphere. Charon's north polar region is strikingly red, possibly the result of the unique thermal environment of Charon's poles, which become exceptionally cold during the long, dark winters. Extremely cold regions on Charon' could cold trap gases expanding outward from Pluto as ices, and thereby subject them to rapid radiolytic processing. Charon also exhibits a weak NH3 absorption band over most or all of its surface, with small local concentrations. Detailed results of the radio science, small satellite, particles and plasma, and atmosphere investigations are in press.
NASA分類Lunar and Planetary Science and Exploration
レポートNOARC-E-DAA-TN30623
権利Copyright, Distribution as joint owner in the copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。