JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルBayesian Factor Analysis and Model Selection
本文(外部サイト)https://catalog.lib.kyushu-u.ac.jp/opac_download_md/9096/2008-2.pdf
参考URLhttp://hdl.handle.net/2324/9096
著者(英)Hirose, Kei; Kawano, Shuichi; Konishi, Sadanori; Ichikawa, Masanori
発行日2009-06-23
発行機関などFaculty of Mathematics, Kyushu University
刊行物名MHF Preprint Series
2008-2
刊行年月日2008-01-15
言語eng
内容記述Factor analysis provides a useful tool for exploring the covariance structure among a set of observed random variables by construction of a smaller number of random variables called common factors. In maximum likelihood factor analysis, the estimates of unique or error variances can turn out to be zero or negative, which makes no sense from a statistical point of view. In order to overcome the problem of these so-called improper solutions, we use a Bayesian approach by specifying a prior distribution for the variances of specific factors, i.e., we introduce a prior distribution for the parameters to prevent the occurrence of improper solutions. Crucial aspects of Bayesian factor analysis include the choice of adjusted parameters, in particular, the hyper-parameters for the prior distribution and also choosing an appropriate number of factors. The choice of these parameters can be viewed as a model selection and evaluation problem. We derive a model selection criterion for a Bayesian factor analysis model. Monte Carlo simulations are conducted to investigate the efficiency of the proposed procedures. A real data example is also given to illustrate our procedures.
キーワードBayesian approach; EM algorithm; Factor analysis; Model selection criterion
資料種別Preprint
著者版フラグauthor


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。