JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルFurther Research on the Electrification of Pyrocumulus Clouds
本文(外部サイト)http://hdl.handle.net/2060/20150002895
著者(英)Bateman, Monte; Mach, Douglas; Laroche, Kendell; Lang, Timothy J.; Baum, Bryan
発行日2015-01-04
言語eng
内容記述Past research on pyrocumulus electrification has demonstrated that a variety of lightning types can occur, including cloudtoground (CG) flashes, sometimes of dominant positive polarity, as well as small intracloud (IC) discharges in the upper levels of the pyrocloud. In Colorado during summer 2012, the first combined polarimetric radar, multiDoppler radar, and threedimensional lightning mapping array (LMA) observations of lightningproducing pyrocumulus were obtained. These observations suggested that the National Lightning Detection Network (NLDN) was not sensitive enough to detect the small IC flashes that appear to be the dominant mode of lightning in these clouds. However, after an upgrade to the network in late 2012, the NLDN began detecting some of this pyrocumulus lightning. Multiple pyrocumulus clouds documented by the University of Wisconsin for various fires in 2013 and 2014 (including over the Rim, West Fork Complex, Yarnell Hill, Hardluck, and several other incidents) are examined and reported on here. This study exploits the increasedsensitivity NLDN as well as the new nationwide U.S. network of polarimetric Nextgeneration Radars (NEXRADs). These observations document the common occurrence of a polarimetric "dirty ice" signature modest reflectivities (2040+ dBZ), nearzero differential reflectivity, and reduced correlation coefficient (less than 0.9) prior to the production of lightning. This signature is indicative of a mixture of ash and ice particles in the upper levels of the pyrocloud (less than 20 C), with the ice interpreted as being necessary for pyrocloud electrification. PseudoGeostationary Lightning Mapper (GLM) data will be produced from the 2012 LMA observations, and the ability of GLM to detect small pyrocumulus ICs will be assessed. The utility of lightning and polarimetric radar for documenting rapid wildfire growth, as well as for documenting pyrocumulus impacts on the composition of the upper troposphere/lower stratosphere (UTLS), will be discussed.
NASA分類Meteorology and Climatology
レポートNOM14-3969
権利Copyright, Distribution as joint owner in the copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。