JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルA Neural Network Approach for Identifying Particle Pitch Angle Distributions in Van Allen Probes Data
著者(英)Walsh, B. M.; Da Silva, L. A.; Vieira, L. E. A.; Alves, L. R.; Medeiros, C.; Sibeck, D. G.; Baker, D. N.; Silveira, M. V. D.; Mendes, O.; Rockenbach, M.; Souza, V. M.; Koga, D.; Marchezi, J. P.; Kanekal, S. G.; Jauer, P. R.; Lago, A. Dal; Gonzalez, W. D.
著者所属(英)NASA Goddard Space Flight Center
発行日2016-04-06
言語eng
内容記述Analysis of particle pitch angle distributions (PADs) has been used as a means to comprehend a multitude of different physical mechanisms that lead to flux variations in the Van Allen belts and also to particle precipitation into the upper atmosphere. In this work we developed a neural network-based data clustering methodology that automatically identifies distinct PAD types in an unsupervised way using particle flux data. One can promptly identify and locate three well-known PAD types in both time and radial distance, namely, 90deg peaked, butterfly, and flattop distributions. In order to illustrate the applicability of our methodology, we used relativistic electron flux data from the whole month of November 2014, acquired from the Relativistic Electron-Proton Telescope instrument on board the Van Allen Probes, but it is emphasized that our approach can also be used with multiplatform spacecraft data. Our PAD classification results are in reasonably good agreement with those obtained by standard statistical fitting algorithms. The proposed methodology has a potential use for Van Allen belt's monitoring.
NASA分類Space Sciences (General)
レポートNOGSFC-E-DAA-TN41145
権利Copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。