JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルExperimental Study of Vane Heat Transfer and Aerodynamics at Elevated Levels of Turbulence
本文(外部サイト)http://hdl.handle.net/2060/19950013496
著者(英)Ames, Forrest E.
著者所属(英)Detroit Diesel Allison
発行日1994-11-01
言語eng
内容記述A four vane subsonic cascade was used to investigate how free stream turbulence influences pressure surface heat transfer. A simulated combustor turbulence generator was built to generate high level (13 percent) large scale (Lu approximately 44 percent inlet span) turbulence. The mock combustor was also moved upstream to generate a moderate level (8.3 percent) of turbulence for comparison to smaller scale grid generated turbulence (7.8 percent). The high level combustor turbulence caused an average pressure surface heat transfer augmentation of 56 percent above the low turbulence baseline. The smaller scale grid turbulence produced the next greatest effect on heat transfer and demonstrated the importance of scale on heat transfer augmentation. In general, the heat transfer scaling parameter U(sub infinity) TU(sub infinity) LU(sub infinity)(exp -1/3) was found to hold for the turbulence. Heat transfer augmentation was also found to scale approximately on Re(sub ex)(exp 1/3) at constant turbulence conditions. Some evidence of turbulence intensification in terms of elevated dissipation rates was found along the pressure surface outside the boundary layer. However, based on the level of dissipation and the resulting heat transfer augmentation, the amplification of turbulence has only a moderate effect on pressure surface heat transfer. The flow field turbulence does drive turbulent production within the boundary layer which in turn causes the high levels of heat transfer augmentation. Unlike heat transfer, the flow field straining was found to have a significant effect on turbulence isotropy. On examination of the one dimensional spectra for u' and v', the effect to isotropy was largely limited to lower wavenumber spectra. The higher wavenumber spectra showed little or no change. The high level large scale turbulence was found to have a strong influence on wake development. The free stream turbulence significantly enhanced mixing resulting in broader and shallower wakes than the baseline case. High levels of flow field turbulence were found to correlate with a significant increase in total pressure loss in the core of the flow. Documenting the wake growth and characteristics provides boundary conditions for the downstream rotor.
NASA分類FLUID MECHANICS AND HEAT TRANSFER
レポートNO95N19912
NASA-CR-4633
E-9203
NAS 1.26:4633
権利No Copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。