JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルOn the Electrification of Pyrocumulus Clouds
本文(外部サイト)http://hdl.handle.net/2060/20140006415
著者(英)Krehbiel, Paul; Lang, Timothy J.; Dolan, Brenda; Rutledge, Steven A.; Rison, William; Lindsey, Daniel T.
発行日2013-12-09
言語eng
内容記述The electrification (or lack thereof) of pyrocumulus clouds is examined for several different wildfires that occurred during 20122013. For example, pyrocumulus clouds above three Colorado wildfires (Hewlett Gulch, High Park, and Waldo Canyon; all occurred during summer 2012) electrified and produced small intracloud discharges whenever the smoke plumes grew to high altitudes (over 10 km above mean sea level, or MSL). This occurred during periods of rapid wildfire growth, as indicated by the shortwave infrared channel on a geostationary satellite, as well as by incident reports. In the Hewlett Gulch case, the fire growth led to increased updrafts within the plume, as inferred by multipleDoppler radar syntheses, which led to the vertical development and subsequent electrification a life cycle as short as 30 minutes. The lightning, detected by a threedimensional lightning mapping network, was favored in highaltitude regions (~10 km MSL) containing modest reflectivities (25 dBZ and lower), ~0 dB differential reflectivity, and reduced correlation coefficient (~0.60.7). This indicated the likely presence of ice particles (crystals and aggregates, possibly rimed) mixed with ash. Though neither multipleDoppler nor polarimetric observations were available during the electrification of the High Park and Waldo Canyon plumes, their NEXRAD observations showed reflectivity structures consistent with Hewlett Gulch. In addition, polarimetric and multipleDoppler scanning of unelectrified High Park plumes indicated only irregularly shaped ash, and not ice, was present (i.e., reflectivities < 25 dBZ, differential reflectivity > 5 dB, correlation < 0.4), and there was no broaching of the 10 km altitude. Based on these results, the electrification likely was caused by icebased processes that did not involve significant amounts of graupel. Results for pyrocumulus clouds above notable 2013 wildfires that also experienced rapid growth (e.g., Black Forest, Yarnell Hill, West Fork, Tres Lagunas, etc.) will be compared against the 2012 cases, with special emphasis on polarimetric NEXRAD and available lightning measurements, in order to better understand the physical processes responsible for pyrocumulus electrification.
NASA分類Meteorology and Climatology
レポートNOM13-2836
権利Copyright, Distribution as joint owner in the copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。