タイトル | Turbomachinery for Low-to-High Mach Number Flight |
本文(外部サイト) | http://hdl.handle.net/2060/20040082077 |
著者(英) | Tan, Choon S.; Shah, Parthiv N. |
著者所属(英) | Massachusetts Inst. of Tech. |
発行日 | 2004-01-01 |
言語 | eng |
内容記述 | The thrust capability of turbojet cycles is reduced at high flight Mach number (3+) by the increase in inlet stagnation temperature. The 'hot section' temperature limit imposed by materials technology sets the maximum heat addition and, hence, sets the maximum flight Mach number of the operating envelope. Compressor pre-cooling, either via a heat exchanger or mass-injection, has been suggested as a means to reduce compressor inlet temperature and increase mass flow capability, thereby increasing thrust. To date, however, no research has looked at compressor cooling (i.e., using a compressor both to perform work on the gas path air and extract heat from it simultaneously). We wish to assess the feasibility of this novel concept for use in low-to-high Mach number flight. The results to-date show that an axial compressor with cooling: (1) relieves choking in rear stages (hence opening up operability), (2) yields higher-pressure ratio and (3) yields higher efficiency for a given corrected speed and mass flow. The performance benefit is driven: (i) at the blade passage level, by a decrease in the total pressure reduction coefficient and an increase in the flow turning; and (ii) by the reduction in temperature that results in less work required for a given pressure ratio. The latter is a thermodynamic effect. As an example, calculations were performed for an eight-stage compressor with an adiabatic design pressure ratio of 5. By defining non-dimensional cooling as the percentage of compressor inlet stagnation enthalpy removed by a heat sink, the model shows that a non-dimensional cooling of percent in each blade row of the first two stages can increase the compressor pressure ratio by as much as 10-20 percent. Maximum corrected mass flow at a given corrected speed may increase by as much as 5 percent. In addition, efficiency may increase by as much as 5 points. A framework for characterizing and generating the performance map for a cooled compressor has been developed. The approach is based upon CFD computations and mean line analysis. Figures of merit that characterize the bulk performance of blade passage flows with and without cooling are extracted from CFD solutions. Such performance characterization is then applied to a preliminary compressor design framework (mean line). The generic nature of this approach makes it suitable for assessing the effect of different types of compressor cooling schemes, such as heat exchange or evaporative cooling (mass injection). Future work will focus on answering system level questions regarding the feasibility of compressor cooling. Specifically, we wish to determine the operational parametric space in which compressor cooling would be advantageous over other high flight Mach number propulsion concepts. In addition, we will explore the design requirements of cooled compressor turbomachinery, as well as the flow phenomena that limit and control its operation, and the technology barriers that must be crossed for its implementation. |
NASA分類 | Fluid Mechanics and Thermodynamics |
権利 | No Copyright |
URI | https://repository.exst.jaxa.jp/dspace/handle/a-is/89025 |
|