タイトル | Cepheid Calibration of the Peak Brightness of SNe Ia. |
本文(外部サイト) | http://hdl.handle.net/2060/20000028359 |
著者(英) | Tammann, G. A.; Sandage, Allan; Saha, A.; Macchetto, F. D.; Labhardt, Lukas; Panagia, N. |
著者所属(英) | National Optical Astronomy Observatories |
発行日 | 1999-05-01 |
言語 | eng |
内容記述 | Repeated imaging observations have been made of NGC 3627 with the Hubble Space Telescope in 1997/98, over an interval of 58 days. Images were obtained on 12 epochs in the F555W band and on five epochs in the F8141,V band. The galaxy hosted the prototypical, "Branch normal", type la supernova SN 1989B. A total of 83 variables have been found, of which 68 are definite Cepheid variables with periods ranging from 75 days to 3.85 days. The de-reddened distance modulus is determined to be (m - M)(sub 0) = 30.22 +/- 0.12 (internal uncertainty) using a subset of the Cepheid data whose reddening and error parameters are secure. The photometric data of Wells et al. (1994), combined with the Cepheid data for NGC 3627 give MB(max) = -19.36 +/- 0.18 and M(sub V)(max) = -19.34 +/- 0.16 for SN 1989B. Combined with the previous six calibrations in this program, plus two additional calibrations determined by others gives the mean absolute magnitudes at maximum of (M(sub B)) = -19.48 +/- 0.07 for "Brunch normal" SNe Ia at this interim stage in the calibration program. Using the argument by Wells et al. (1994) that SN 1989B here is virtually identical in decay rate and colors at maximum with SN 198ON in NGC 1316 in the Fornax cluster, and that such identity means nearly identical absolute magnitude, it follows that the difference in the distance modulus of NGC 3627 and NGC 1316 is 1.62 +/- 0.03 mag. Thus the NGC 3627 modulus implies that (m - M)(sub 0) = 31.84 for NGC 1316. The second parameter correlations of M(max) of blue SNe la with decay rate, color at maximum, and Hubble type are re-investigated. The dependence of (M(max)) on decay rate is non-linear, showing a minimum for decay rates between 1.0 less than ADelta(sub m)15 less than 1.6. Magnitudes corrected for decay rate show no dependence on Hubble type, but a dependence on color remains. Correcting both the fiducial sample of 34 SNe la with decay-rate data and the current eight calibrating SNe la for the correlation with decay rate as well as color gives H(sub 0) = 60 +/- 2 (internal) km/s Mpc, in both B and V. The same value to within 4% is obtained if only the SNe la in spirals (without second parameter corrections) are considered. The correlation of SNe la color at maximum with M(max) cannot be due to internal absorption because the slope coefficients in B, V, and I with the change in magnitude are far from or even opposite to the canonical reddening values. The color effect must be intrinsic to the supernova physics. "Absorption" corrections of distant blue SNe la will lead to incorrect values of H(sub 0). The Cepheid distances used in this series are insensitive to metallicity differences. The zeropoint of the P-L relation is based on an assumed LMC modulus of (m - M)(sub 0) = 18.50. As this may have to be increased by 0(sup m).06 to 0(sup m).08, all distances in this paper will follow and Ho will decrease by 3 - 4%. |
NASA分類 | Astronomy |
レポートNO | NOAO-Preprint-837 |
権利 | No Copyright |
|