JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルCloud Ozone Dust Imager (CODI)
本文(外部サイト)http://hdl.handle.net/2060/19990089299
著者(英)Murphy, Jim; Clancy, R. Todd; Goguen, Jay; Dusenbery, Paul; James, Phil; Gladstone, Rany; Wolff, Michael; Kahn, Ralph; Allen, Mark
著者所属(英)Space Science Inst.
発行日1995-01-01
1995
言語eng
内容記述The Cloud Ozone Dust Imager (CODI) is proposed to investigate the current climatic balance of the Mars atmosphere, with particular emphasis on the important but poorly understood roles which dust and water ice aerosols play in this balance. The large atmospheric heating (20-50 K) resulting from global dust storms around Mars perihelion is well recognized. However, groundbased observations of Mars atmospheric temperatures, water vapor, and clouds since the Viking missions have identified a much colder, cloudier atmosphere around Mars aphelion that may prove as important as global dust storms in determining the interannual and long-term behavior of the Mars climate. The key climate issues CODI is designed to investigate are: 1) the degree to which non-linear interactions between atmospheric dust heating, water vapor saturation, and cloud nucleation influence the seasonal and interannual variability of the Mars atmosphere, and 2) whether the strong orbital forcing of atmospheric dust loading, temperatures and water vapor saturation determines the long-term balance of Mars water, as reflected in the north-south hemispheric asymmetries of atmospheric water vapor and polar water ice abundances. The CODI experiment will measure the daily, seasonal and (potentially) interannual variability of atmospheric dust and cloud opacities, and the key physical properties of these aerosols which determine their role in the climate cycles of Mars. CODI is a small (1.2 kg), fixed pointing camera, in which four wide-angle (+/- 70 deg) lenses illuminate fixed filters and CCD arrays. Simultaneous sky/surface imaging of Mars is obtained at an angular resolution of 0.28 deg/pixel for wavelengths of 255, 336, 502, and 673 nm (similar to Hubble Space Telescope filters). These wavelengths serve to measure atmospheric ozone (255 and 336 nm), discriminate ice and dust aerosols (336 and 673 nm), and construct color images (336, 502, and 673 nm). The CODI images are detected on four 512 x 512 pixel arrays, as partitioned on two 1024 x 1024 CCD's operated in frame transfer mode. The center of the CODI field-of-view is canted 40 deg from the zenith direction to obtain sky brightness measurements and a 20 deg surface field-of-view. Daily image observations will be conducted when the Sun is greater than or equal to 5 deg outside the edge of the CODI field-of-view, and twilight and nighttime imaging will obtained on a weekly basis. The 673 nm channel includes a polarizer wheel to obtain sky/surface polarimetry. A dust cover protects the entire lens assemblies of all four CODI channels. This opaque dust cover, which is normally opened for CODI imaging, includes a small fixed mirror and transparent window positioned above the 673 nm lens, to redirect the 673 nm field-of-view to the surface for descent imaging. Fixed pointing, internal data buffering, low operating power (2-4 W for less than or equal to 30 seconds), selective data transmission, and simple operational characteristics of the CODI experiment place minimum resource and operational demands on the Mars Surveyor 1998 lander. The CODI science goals are optimized for, but not restricted to, a low-latitude landing site (20 deg S-30 deg N). The primary CODI measurement objectives are the opacities, wave forms, particle properties (size, shape, and alignment), and heights of clouds; the opacities, particle properties, and vertical distribution of dust; and the opacity and vertical distribution of ozone. The variability of cloud, ozone, and dust opacities will be determined on diurnal, daily, and seasonal timescales. Wind velocities will be determined from cloud motions and wave characteristics; and the temporal variability of atmospheric water vapor, with limited altitude information, will be inferred from the CODI ozone observations. Secondary measurement objectives include limited descent imaging capability, surface uv-visible photometry and polarimetry, photochemistry, and meteorite infall rates.
NASA分類Lunar and Planetary Exploration
レポートNOSSI-0795.01.011
権利No Copyright
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/95857


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。